

Biogas Development in the world and in Europe

Dominik Rutz WIP – Renewable Energies, Munich, Germany

Abrantes, Portugal, 26 October 2011

www.wip-munich.de

Biogas Training, Abrantes, 2011

1

Content

- 1. Overview biogas plants worldwide
- 2. Biogas in Europe
- 3. Lessons learnt from other countries

1. Overview Biogas Plants Worldwide from small/simple scale to large/industrial scale

Training, Abrantes, 2011

Chile

© Dominik Rutz

www.wip-munich.de

Biogas Plants worldwide

- Africa: Potential for more than 20 Mio household installations (SNV)
- India: > 2 Mio installations
- Nepal: 150,000 installations
- Pakistan: several hundret thousands
- China: > 6 Mio installations
- N-America, Latin America: increasing numbers

2. Biogas in Europe

www.wip-munich.de

WIP

Production d'énergie primaire biogaz par habitant pour chaque pays de l'Union européenne en 2009* (tep/1 000 hab.)

Primary biogas energy prodcution per inhabitant for each European Union country in 2009* (toe/1000 inhab.)

Germany		51,5
United Kingdom	27,8	
Luxembourg	24,5	
Austria	19,7	
Denmark	18,0	
Netherlands	16,2	
Czech Republic	12,4	
Sweden	11,7	
Belgium	11,5	
Slovenia	10,9	
France**	8,1	
Ireland	8,0	
Finland	7,7	
Italy	7,4	
Greece	5,2	
Latvia	4,3	
Spain	4,0	
Hungary	3,1	
Slovakia	3,0	
Poland	2,6	
Portugal	2,2	
Estonia	2,1	
Lithuania	1,4	
Cyprus	0,2	
Romania	0,1	
European Union	16,7	

Tep/1 000 hab. toe/1 000 inhab.

Source: http://www.eurobserv-er.org/

Primary Energy Production of Biogas per 1000 habitants

in Europe 2009

* Estimation. ** DOM non inclus. French overseas departments excluded. Les décimales sont séparées par une virgule. Decimals are written with a comma.

Source: EurObserv'ER 2010.

Options for Organic Waste Treatment

Landfill

- Reduction necessary to comply with Directive 2006/12/EC

- Landfill gas could be energetically used, but energy output is low

- No use of nutrients is possible

Incineration Plant

- + Energetic use
- "waste heat" is often un-used
- No use of nutrients is possible
- High investment costs and other barriers for new plants
- Long transport ways due to centralised plants

Household Composting

- + Common practice in many cases
- + High-value endproduct: closed nutrient cycle
- + No sophisticated logistics needed
- No energetic output
- Not all waste is suitable for private composts
- Not possible in urban areas

Industrial Composting

- + Common practice in many cases
- + High-value endproduct: closed nutrient cycle
- No energetic output

Anaerobic Digestion

- + High energetic output
- + High-value endproduct: closed nutrient cycle
- \rightarrow Still needs nontechnical support

Energy Production from Municipal Solid Waste per 1000 habitants 2009

* Estimation. ** DOM non inclus. French overseas departments excluded. Les décimales sont séparées par une virgule. Decimals are written with a comma. Source: EurObserv'ER 2010.

www.wip-munich.de

Source: http://www.eurobserv-er.org/

WIP

Energy Production from Municipal Solid Waste 2009

* Estimation: 1 - DOM non inclus, French overseas departments excluded. Source: EurObserv'ER 2010

Biogas Feedstock Classification

Biogas in the German nREAP

Estimated development of biogas plant installations according to the National Renewable Energy Action Plan (nREAP)

Source: Fraunhofer IWES after FNR, FVB 2010 and on basis of estimation of the nREAP

Typical biogas plant in Germany

- Size: 300-500 kWel
- Biogas use: electricity
- Feedstock: mainly corn silage, but also manure, waste, etc.

www.wip-munich.de

WIP

Typical biogas plant in Germany

WIP

Feedstock: Catering/Food Waste

Residue: Digestate as Fertilizer

Output: Heat

www.wip-munich.de

WIP

Output: Biomethane for grid injection

© Dominik Rutz

Output: Biomethane as transport fuel

Output: Electricity from Fuel Cell

Biogas in Denmark

- 60 farm-scale biogas plants
- 21 **centralised** co-digestion biogas plants
 - usually non-profit farmer cooperatives
 - owned by 10-80 farmers
 - feedstock is a combination of manure and waste
 - feedstock is collected from different farmers to the centralised biogas plant
 - digestate is brought back to storage tanks on the fields

Centralised Co-digestion Plant in Denmark

European Framework

- Renewable Energy Directive
 - Use of Biomethane (in transport)nREAPs
- Waste Directive
- Nitrate Directive
- Aebiom Roadmap
- European Biogas Association

WIP

The "20-20-20" EU policy

3. Lessons learnt from other countries

Lessons from other countries (examples)

Germany:

- \rightarrow too much reliance on corn silage as feedstock: price fluctuations
- \rightarrow only limited use of heat from CHP plants
- \rightarrow insufficient legislation on the use of digestate from waste materials
- \rightarrow open (not covered) digestate storage tanks

Czech Republic:

 \rightarrow too high initial feed-in prices

UK:

WIP

 \rightarrow former application of inefficient quota system instead of feed-in systems

Latvia:

 \rightarrow wrong use /estimations of feedstock (corn yields are low)

 \rightarrow high heat / insulation need due to cold winters

- Germany needed more than 70 years to develop biogas...
- Portugal could do it much faster! In 7 years?

.....

WIP

www.wip-munich.de

Thank You

Contact

Dominik Rutz WIP – Renewable Energies Sylvensteinstrasse 2 81369 Munich, Germany

www.big-east.eu www.biogasin.org www.urbanbiogas.eu

Dominik.rutz@wip-munich.de

FUROPE

Renewable Energy Directive (RED)

- Combat climate change
- Security of energy supply
- Green jobs and innovation

- Directive 2009/28/EC
- Publication in Official Journal on 5 June 2009.

Renewable Energy Directive (RED)

- 1. Sets **mandatory national targets** for renewable energy shares, including 10% renewables in transport (incl. biofuels) in 2020
 - Biofuels from wastes, residues, non-food cellulosic material, ligno-cellulosic material count double towards targets (Article 21)
- 2. Requires national renewable energy action plans (NREAPs)
- 3. Requires **reduction of administrative and regulatory barriers**, improvements in provision of information and training and improves renewables' access to the electricity grid
- 4. Creates a **sustainability regime** for biofuels (Articles 17 19) (criteria for economic operators, monitoring for the Commission)

